A Recommender System for Predicting Students' Admission to a Graduate Program using Machine Learning Algorithms

نویسندگان

چکیده

<p>In the 21st century, University educations are becoming a key pillar of social and economic life. It plays major role not only in educational process but also ensuring two important things which prosperous career financial security. However, predicting university admission can be especially difficult because students aware requirements. For that reason, main purpose this research work is to provide recommender system for early based on four Machine Learning algorithms namely Linear Regression, Decision Tree, Support Vector Random Forest Regression. The experimental results showed Regression most suitable algorithm admission. Also, Cumulative Grade Point Average (CGPA) parameter influences chance admission.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Bankruptcy Using Machine Learning Algorithms

This paper is written for predicting Bankruptcy using different Machine Learning Algorithms. Whether the company will go bankrupt or not is one of the most challenging and toughest question to answer in the 21 st Century. Bankruptcy is defined as the final stage of failure for a firm. A company declares that it has gone bankrupt when at that present moment it does not have enough funds to pay t...

متن کامل

Relationship between Students’ Readiness for e-Learning, Learner Satisfaction and Student Performance: The case of a post-graduate education program

The aim of this study was to explore students’ readiness for e-learning during Covid-19, determining learner satisfaction with online learning experiences and their relations with students’ success. A descriptive-analytical research design and Spearman correlation coefficient were used in this study. Population under study, which was considered as the sample, included students of a course in a ...

متن کامل

Predicting Students' Performance In Distance Learning Using Machine Learning Techniques

The ability to predict a student’s performance could be useful in a great number of different ways associated with university-level distance learning. Students’ key demographic characteristics and their marks on a few written assignments can constitute the training set for a supervised machine learning algorithm. The learning algorithm could then be able to predict the performance of new studen...

متن کامل

A personalized English learning recommender system for ESL students

This paper has developed an online personalized English learning recommender system capable of providing ESL students with reading lessons that suit their different interests and therefore increase the motivation to learn. The system, using content-based analysis, collaborative filtering, and data mining techniques, analyzes real students’ reading data and generates recommender scores, based on...

متن کامل

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of online and biomedical engineering

سال: 2021

ISSN: ['2626-8493']

DOI: https://doi.org/10.3991/ijoe.v17i02.20049